Standard ICs

EL driver for portable sets
 BA3899F

The BA3899F is an IC developed for EL drive applications. It uses a more compact interface than transformer systems, and is ideal for use in thin sets.

- Applications

Pagers, electronic notebooks and other portable devices

- Features

1) Drive oscillation frequency can be set using external capacitance.
2) Equipped with standby control pin.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	V cc	8.0	V
Power dissipation	Pd	450^{*}	mW
Operating temperature	Topr	$-10 \sim+60$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
Maximum applied voltage	V st	8.0	V

* Reduced by 4.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
- Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	Vcc	1.0	5.0	7.0	V

- Block diagram

- Pin descriptions

Pin No.	Pin name	$1 / 0$	Pin voltage	Internal equivalent circuit	Function
1	GND	I	-	-	GND pin
2	N.C.	-	-	-	-
3	C1	I/ O	-		OSC1 oscillator circuit; external capacitor pin
4	C2	$1 / 0$	-		OSC2 oscillator circuit; external capacitor pin
5	STBY	1	0		Standby control pin (HIGH state: standby cancelled) OWhen applying resistance, etc. to the STBY pin, be careful not to exceed the threshold values.
6	Vcc	I	-	-	Vcc input pin
7	SW2	O	-		SW2 switching output pin
8	SW1	O	-		SW1 switching output pin

- Electrical characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{C} 1=0.033 \mu \mathrm{~F}, \mathrm{C} 2=1500 \mathrm{pF}$)

Parameter			Symbol	Min.	Typ.	Max.	Unit	Conditions
Supply current			Icc	3.0	4.6	6.2	mA	When used as stand-alone unit
C1 pin oscillation frequency			fsw1	75	95	120	Hz	-
C2 pin oscillation frequency			fsw2	17	23	29	kHz	-
SW1	Source current		Iswiso	100	140	180	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{c} 1}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{c} 2}=0.05 \mathrm{~V}, \mathrm{~V}_{\mathrm{sw}}=0 \mathrm{~V}$
	Sink current		Iswisı	-40	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{c} 1}=0.05 \mathrm{~V}, \mathrm{~V}_{\mathrm{c} 2}=0.05 \mathrm{~V}, \mathrm{~V}_{\text {sw } 1}=1.0 \mathrm{~V}$
SW2	Source current		Isw2so	3.2	4.4	6.1	mA	$\mathrm{V}_{\mathrm{c} 1}=0.05 \mathrm{~V}, \mathrm{~V}_{\mathrm{c} 2}=0.05 \mathrm{~V}, \mathrm{~V}_{\text {sw }}=0 \mathrm{~V}$
	Pull-down resistance		Rsw2	400	500	600	Ω	$\mathrm{Vst}=0.35 \mathrm{~V}, \mathrm{Vsw2}=0.3 \mathrm{~V}$
Standby pin control voltage condition		Operating	Vston	1.0	-	-	V	-
		Non-operating	Vstoff	-	-	0.3	V	-
Quiescent current in standby state			l (ST)	-	0	2.0	$\mu \mathrm{A}$	-

- Measurement circuit

Fig. 1

- Application example

Fig. 2

* Because of the characteristics of the EL element, continuous application of particularly high DC power supply voltage can shorten the lifetime of the element. To avoid this, we recommend inserting a switch in the power supply line.

Fig. 3

- Operation notes

(1) EL drive output

As shown in Figure 4, the EL drive output consists of charging (rise in voltage caused by switching) and discharging waveforms. The switching frequency is determined by fswz and the charging and discharging timing by fsw.
(4) Q1, Q2, and D1

The Vo (max.) shown in Figure 4 is applied to the output Vo, so if using any transistor other than that recommended, caution is required concerning the pressure withstand value. Also, Q2 must have characteristics which allow it to keep pace with the switching speed of fswz.

Fig. 4
(5) $R x$ (resistor for adjusting light volume)

With a configuration like that shown in Figure 5, the volume of light can be adjusted. However, Rx should be set so that Ix satisfies the following condition.

$$
\mathrm{Ix}\left(=\frac{\mathrm{Vx}-0.2 \mathrm{~V}}{\mathrm{Rx}}\right)<40 \mu \mathrm{~A}
$$

If $\mathrm{Ix}>40 \mu \mathrm{~A}$, LSI dispersion, temperature fluctuation, and other elements can cause oscillation of the C2 pin to stop. Be sure the above condition is satisfied.

Fig. 5

The recommended setting range for fsw 1 is 40 Hz to 800 Hz . However, the Vo (Max.) shown in Figure 4 is determined by fsw ${ }^{1}$, so caution is required concerning the pressure withstand values of Q1, Q2, and D1.
(3) fsw2
fswz is the switching pressure rise frequency, and is determined by the external capacitance of the C 2 pin. This value (1500 pF) is determined by the inductance value and the Q2 transistor capability. When changing this value, the drive capability of Q2 must be taken into consideration in order to avoid the possibility of malfunction.

- Electrical characteristic curves

Fig. 6 Supply current (when used as stand-alone unit) vs. power supply voltage

Fig. 8 SW1 sink current vs. power supply voltage

Fig. 10 SW2 source current vs. power supply voltage

Fig. 7 Oscillation frequency of C1 and C2 pins vs. power supply voltage

Fig. 9 SW1 source current vs. power supply voltage

Fig. 11 SW2 pull-down resistance vs. power supply voltage

- External dimensions (Units: mm)

